
Week 13 - Monday

 What did we talk about last time?
 Sorting
 Arrays.sort()
 Collections.sort()
 Comparable<T> interface
 Custom Comparator<T> objects

Characteristic Description

Maintainability
We can update the code to add in new requirements and
features.

Dependability and security
Software is reliable, secure, and safe. Systems failures
don't cause physical or economic damage. Hackers can't
break in or damage the system.

Efficiency
Software uses processors and memory efficiently.
Software is responsive.

Acceptability
The users of the software can understand and use the
software, and it's compatible with other tools they use.

 People need software
 It's everywhere, in every facet of life
 If it doesn't work correctly or is vulnerable to attack, people can be

hurt, die, suffer financial losses, etc.
 It's cheaper to engineer it the right way
 Hacking stuff together seems faster and cheaper…at first
 But for large, long term projects, a well-managed development

process ends up saving money and time

 In theory, these stages are separate
 In practice, they often feedback to each other
 It's very expensive if mistakes are discovered in later stages
 One rule of thumb is that mistakes costs 10 times as much to fix than

they would have at a previous stage

Requirements
Definition System and

Software
Design Implementation

and Unit Testing
Integration and
System Testing

Operation and
Maintenance

 Incremental software
development starts with an
initial version that evolves
with user feedback

 Specification, development,
and validation happen
continually and concurrently

 Incremental development is
a cornerstone of Agile
development

Outline
Description

Initial
Version

Intermediate
Versions

Final
Version

Specification

Development

Validation

PROS

 The cost of changing customer
requirements is smaller

 It's easier to get customer
feedback

 Rapid delivery and deployment
of usable software is possible

CONS

 There's less documentation
since it's time-prohibitive to
document each rapidly changing
version

 Structure tends to worsen over
time as more code is added
 Time must be spent on

refactoring

 At both the requirements stage and the design stage,
modeling can be useful

 Modeling mostly means drawing boxes and arrows
 We want high-level descriptions of:
 What the thing is supposed to do
 What parts it's composed of
 How it does what it does

 Models leave out details
 Models are useful to help understand a complex system
 During requirements engineering, models clarify what an existing system

does
 Or models could be used to plan out a new system

 Models can represent different perspectives of a system:
 External: the context of a system
 Interaction: the interactions within the system or between it and the

outside
 Structural: organization of a system
 Behavior: how the system responds to events

 The Unified Modeling Language (UML) is an international
standard for graphical models of software systems

 A few useful kinds of diagrams:
 Activity diagrams
 Use case diagrams
 Sequence diagrams
 State diagrams

 Class diagrams are important enough that we'll talk about
them in greater detail

 Activity diagrams show the workflow of
actions that a system takes

 XKCD of an activity diagram for writing good
code
 From: https://xkcd.com/844/

 Formally:
 Rounded rectangles represent actions
 Diamonds represent decisions
 Bars represent starting or ending concurrent

activities
 A black circle represents the start
 An encircled black circle represents the end

https://xkcd.com/844/

 Data-driven models show how input data is processed to generate
output data

 The following is an activity diagram that shows how blood sugar
data is processed by a system to deliver the right amount of
insulin

 Use case diagrams show
relationships between users of a
system and different use cases
where the user is involved

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:Use_case_restaurant_model.svg

 Sequence diagrams show system
object interactions over time

 These messages are visualized as
arrows
 Solid arrow heads are synchronous

messages
 Open arrow heads are

asynchronous messages
 Dashed lines represent replies

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:CheckEmail.svg

 State diagrams are the UML
generalization of finite state
automata from discrete math

 They describe a series of states
that a system can be in and how
transitions between those states
happen

 Example from uml-diagrams.org:

https://www.uml-diagrams.org/state-machine-diagrams.html#behavioral-state-machine

 Event-driven modeling is
another kind of behavioral
modeling that focuses on
how a system responds to
events rather than on
processing a stream of
data

 Here's a state diagram for
a microwave oven based
on various outside events

 Structural models show how a system is organized in terms of
its components and their relationships

 UML class diagrams are used for structural models, but they
can be used in many different ways:
 Relationships
 Generalization
 Aggregation

 Class diagrams show many kinds of relationships
 The classes being described often (but not always)

map to classes in object-oriented languages
 The following symbols are used to mark class

members:
 + Public
 - Private
 # Protected
 / Derived
 ~ Package
 * Random

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:KP-UML-Generalization-20060325.svg

 Associations between classes can
be drawn with a line in a class
diagram

 Notations can be used to mark
relationships as one to one, many
to one, many to many, etc.

 These kinds of relationships are
particularly important when
designing a database

 Classes can be listed with their
attributes

 However, there are often classes
that share attributes with each
other

 Some classes are specialized
versions of other classes, with
more attributes and abilities

 This relationship between general
classes and more specialized
classes is handled in Java by the
mechanic of inheritance

 Another way of using class
diagrams is to show that some
objects or classes are made up
of smaller parts represented
by other classes

 A diamond shape is used to
mark a class that is the whole,
and its parts are connected to
the diamond

 Architecture describes the main
structural components in a system
and the relationships between them

 Architectural design is somewhat
freeform
 It's hard to follow a recipe for

architectural design
 There's overlap between requirements

engineering and architectural design
 Block diagrams are commonly used

to describe architecture:

 Stakeholder communication
 Everyone involved in the project can understand the system at a high level

 System analysis
 Creating architecture requires some (hopefully useful) analysis

 Large-scale reuse
 Architecture describes how a system is organized and how the

components interoperate
 Since system architectures are similar for systems with similar

requirements, it may be possible to choose an off-the-shelf system with
the right architecture

 Since architecture is somewhat free-form, a good way to guide the design
is by asking questions

 Since non-functional requirements often relate to the system as a whole,
which non-functional requirements should the architecture focus on?
 Performance
 Security
 Safety
 Availability
 Maintainability

 Emphasis on one area may hurt other areas
 For example, greater security usually comes at the cost of performance

 Even though architectural design is somewhat free-form,
architectural patterns have evolved that fit many different kinds
of programs

 An architectural pattern is an abstract description of a system
that has worked well in the past

 Examples:
 Model-view-controller
 Layered architecture
 Repository architecture
 Client-server architecture
 Pipe and filter architecture

 The Model-View-Controller (MVC)
pattern fits many kinds of web or GUI
interactions

 The model contains the data that is
being represented, often in a database

 The view is how the data is displayed
 The controller is code that updates the

model and selects which view to use
 The Java Swing GUI system is built

around MVC
 Good: greater independence between

data and how it's represented
 Bad: additional complexity for simple

models

 Organize the system into layers
 Each layer provides services to layers

above it, with the lowest layer being the
most fundamental operations

 Layered architectures work well when
adding functionality on top of existing
systems

 Good: entire layers can be replaced as
long as the interfaces are the same

 Bad: it's hard to cleanly separate layers,
and performance sometimes suffers

 If many components share a lot of data, a Repository pattern might be
appropriate

 Components interact by updating the repository
 This pattern is ideal when there is a lot of data stored for a long time
 Good: components can be independent
 Bad: the repository is a single point of failure

 Client-Server patterns are used for distributed systems
 Each server provides a separate service, and clients access those services
 Good: work is distributed, and clients can access just what they need
 Bad: each service is a single point of failure, and performance might be

unpredictable

 In the Pipe and Filter pattern, data is passed from one component to the
next

 Each component transforms input into output
 Good: easy to understand, matches business applications, and allows for

component reuse
 Bad: each component has to agree on formatting with its inputs and

outputs

 Testing
 Introduction to JUnit

 Work on Project 4
 Lab is tomorrow

	COMP 2000
	Last time
	Questions?
	Project 4
	Software Engineering
	A few things we want from software engineering
	Why software engineering is important
	Waterfall model
	Incremental development
	Pros and cons of incremental development
	UML
	Modeling
	System modeling
	UML
	Activity diagrams
	More detailed activity model
	Data-driven modeling
	Use case diagrams
	Sequence diagrams
	State diagrams
	Event-driven modeling
	Class Diagrams
	Structural models
	Class diagrams
	Relationships
	Generalization
	Aggregation
	Architectural Design
	Architecture
	Advantages of well-documented architecture
	Architectural design decisions
	Architectural Patterns
	Architectural patterns
	Model-View-Controller
	Layered architecture
	Repository architecture
	Client-server architecture
	Pipe and filter architecture
	Upcoming
	Next time…
	Reminders

