
Week 13 - Monday

 What did we talk about last time?
 Sorting
 Arrays.sort()
 Collections.sort()
 Comparable<T> interface
 Custom Comparator<T> objects

Characteristic Description

Maintainability
We can update the code to add in new requirements and
features.

Dependability and security
Software is reliable, secure, and safe. Systems failures
don't cause physical or economic damage. Hackers can't
break in or damage the system.

Efficiency
Software uses processors and memory efficiently.
Software is responsive.

Acceptability
The users of the software can understand and use the
software, and it's compatible with other tools they use.

 People need software
 It's everywhere, in every facet of life
 If it doesn't work correctly or is vulnerable to attack, people can be

hurt, die, suffer financial losses, etc.
 It's cheaper to engineer it the right way
 Hacking stuff together seems faster and cheaper…at first
 But for large, long term projects, a well-managed development

process ends up saving money and time

 In theory, these stages are separate
 In practice, they often feedback to each other
 It's very expensive if mistakes are discovered in later stages
 One rule of thumb is that mistakes costs 10 times as much to fix than

they would have at a previous stage

Requirements
Definition System and

Software
Design Implementation

and Unit Testing
Integration and
System Testing

Operation and
Maintenance

 Incremental software
development starts with an
initial version that evolves
with user feedback

 Specification, development,
and validation happen
continually and concurrently

 Incremental development is
a cornerstone of Agile
development

Outline
Description

Initial
Version

Intermediate
Versions

Final
Version

Specification

Development

Validation

PROS

 The cost of changing customer
requirements is smaller

 It's easier to get customer
feedback

 Rapid delivery and deployment
of usable software is possible

CONS

 There's less documentation
since it's time-prohibitive to
document each rapidly changing
version

 Structure tends to worsen over
time as more code is added
 Time must be spent on

refactoring

 At both the requirements stage and the design stage,
modeling can be useful

 Modeling mostly means drawing boxes and arrows
 We want high-level descriptions of:
 What the thing is supposed to do
 What parts it's composed of
 How it does what it does

 Models leave out details
 Models are useful to help understand a complex system
 During requirements engineering, models clarify what an existing system

does
 Or models could be used to plan out a new system

 Models can represent different perspectives of a system:
 External: the context of a system
 Interaction: the interactions within the system or between it and the

outside
 Structural: organization of a system
 Behavior: how the system responds to events

 The Unified Modeling Language (UML) is an international
standard for graphical models of software systems

 A few useful kinds of diagrams:
 Activity diagrams
 Use case diagrams
 Sequence diagrams
 State diagrams

 Class diagrams are important enough that we'll talk about
them in greater detail

 Activity diagrams show the workflow of
actions that a system takes

 XKCD of an activity diagram for writing good
code
 From: https://xkcd.com/844/

 Formally:
 Rounded rectangles represent actions
 Diamonds represent decisions
 Bars represent starting or ending concurrent

activities
 A black circle represents the start
 An encircled black circle represents the end

https://xkcd.com/844/

 Data-driven models show how input data is processed to generate
output data

 The following is an activity diagram that shows how blood sugar
data is processed by a system to deliver the right amount of
insulin

 Use case diagrams show
relationships between users of a
system and different use cases
where the user is involved

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:Use_case_restaurant_model.svg

 Sequence diagrams show system
object interactions over time

 These messages are visualized as
arrows
 Solid arrow heads are synchronous

messages
 Open arrow heads are

asynchronous messages
 Dashed lines represent replies

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:CheckEmail.svg

 State diagrams are the UML
generalization of finite state
automata from discrete math

 They describe a series of states
that a system can be in and how
transitions between those states
happen

 Example from uml-diagrams.org:

https://www.uml-diagrams.org/state-machine-diagrams.html#behavioral-state-machine

 Event-driven modeling is
another kind of behavioral
modeling that focuses on
how a system responds to
events rather than on
processing a stream of
data

 Here's a state diagram for
a microwave oven based
on various outside events

 Structural models show how a system is organized in terms of
its components and their relationships

 UML class diagrams are used for structural models, but they
can be used in many different ways:
 Relationships
 Generalization
 Aggregation

 Class diagrams show many kinds of relationships
 The classes being described often (but not always)

map to classes in object-oriented languages
 The following symbols are used to mark class

members:
 + Public
 - Private
 # Protected
 / Derived
 ~ Package
 * Random

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:KP-UML-Generalization-20060325.svg

 Associations between classes can
be drawn with a line in a class
diagram

 Notations can be used to mark
relationships as one to one, many
to one, many to many, etc.

 These kinds of relationships are
particularly important when
designing a database

 Classes can be listed with their
attributes

 However, there are often classes
that share attributes with each
other

 Some classes are specialized
versions of other classes, with
more attributes and abilities

 This relationship between general
classes and more specialized
classes is handled in Java by the
mechanic of inheritance

 Another way of using class
diagrams is to show that some
objects or classes are made up
of smaller parts represented
by other classes

 A diamond shape is used to
mark a class that is the whole,
and its parts are connected to
the diamond

 Architecture describes the main
structural components in a system
and the relationships between them

 Architectural design is somewhat
freeform
 It's hard to follow a recipe for

architectural design
 There's overlap between requirements

engineering and architectural design
 Block diagrams are commonly used

to describe architecture:

 Stakeholder communication
 Everyone involved in the project can understand the system at a high level

 System analysis
 Creating architecture requires some (hopefully useful) analysis

 Large-scale reuse
 Architecture describes how a system is organized and how the

components interoperate
 Since system architectures are similar for systems with similar

requirements, it may be possible to choose an off-the-shelf system with
the right architecture

 Since architecture is somewhat free-form, a good way to guide the design
is by asking questions

 Since non-functional requirements often relate to the system as a whole,
which non-functional requirements should the architecture focus on?
 Performance
 Security
 Safety
 Availability
 Maintainability

 Emphasis on one area may hurt other areas
 For example, greater security usually comes at the cost of performance

 Even though architectural design is somewhat free-form,
architectural patterns have evolved that fit many different kinds
of programs

 An architectural pattern is an abstract description of a system
that has worked well in the past

 Examples:
 Model-view-controller
 Layered architecture
 Repository architecture
 Client-server architecture
 Pipe and filter architecture

 The Model-View-Controller (MVC)
pattern fits many kinds of web or GUI
interactions

 The model contains the data that is
being represented, often in a database

 The view is how the data is displayed
 The controller is code that updates the

model and selects which view to use
 The Java Swing GUI system is built

around MVC
 Good: greater independence between

data and how it's represented
 Bad: additional complexity for simple

models

 Organize the system into layers
 Each layer provides services to layers

above it, with the lowest layer being the
most fundamental operations

 Layered architectures work well when
adding functionality on top of existing
systems

 Good: entire layers can be replaced as
long as the interfaces are the same

 Bad: it's hard to cleanly separate layers,
and performance sometimes suffers

 If many components share a lot of data, a Repository pattern might be
appropriate

 Components interact by updating the repository
 This pattern is ideal when there is a lot of data stored for a long time
 Good: components can be independent
 Bad: the repository is a single point of failure

 Client-Server patterns are used for distributed systems
 Each server provides a separate service, and clients access those services
 Good: work is distributed, and clients can access just what they need
 Bad: each service is a single point of failure, and performance might be

unpredictable

 In the Pipe and Filter pattern, data is passed from one component to the
next

 Each component transforms input into output
 Good: easy to understand, matches business applications, and allows for

component reuse
 Bad: each component has to agree on formatting with its inputs and

outputs

 Testing
 Introduction to JUnit

 Work on Project 4
 Lab is tomorrow

	COMP 2000
	Last time
	Questions?
	Project 4
	Software Engineering
	A few things we want from software engineering
	Why software engineering is important
	Waterfall model
	Incremental development
	Pros and cons of incremental development
	UML
	Modeling
	System modeling
	UML
	Activity diagrams
	More detailed activity model
	Data-driven modeling
	Use case diagrams
	Sequence diagrams
	State diagrams
	Event-driven modeling
	Class Diagrams
	Structural models
	Class diagrams
	Relationships
	Generalization
	Aggregation
	Architectural Design
	Architecture
	Advantages of well-documented architecture
	Architectural design decisions
	Architectural Patterns
	Architectural patterns
	Model-View-Controller
	Layered architecture
	Repository architecture
	Client-server architecture
	Pipe and filter architecture
	Upcoming
	Next time…
	Reminders

